题目内容
已知定义在R上的函数f(x)=-2x3+bx2+cx(b,c∈R),函数F(x)=f(x)-3x2是奇函数,函数f(x)满足
.
(1)求f(x)的解析式;
(2)讨论f(x)在区间(-3,3)上的单调性.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054724814525.png)
(1)求f(x)的解析式;
(2)讨论f(x)在区间(-3,3)上的单调性.
(1)
;(2)单调递增区间为
,单调递减区间为
,
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054724845834.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054724860462.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054724892461.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054724907481.png)
试题分析:(1)先对
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054724923493.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054724938858.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054724814525.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054724985856.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054725001299.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054725032237.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054725048881.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054725063622.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054725079623.png)
试题解析:
解:(1)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054724938858.png)
F(x)=f(x)-3x2是奇函数,得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054725126393.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054724985856.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054725172399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054725188849.png)
(2)令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054725048881.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054725235501.png)
![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | - | 0 | + | 0 | - |
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054724860462.png)
单调递减区间为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054724892461.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054724907481.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目