题目内容
11.已知函数f(x)=x2+4ax+2a+6.(1)若函数的值域为[0,+∞),求a的值;
(2)若f(x)≥0恒成立,求g(a)=-a•|a+3|+2的值域.
分析 (1)由f(x)的值域为[0,+∞)便有△=0,这样即可解出a;
(2)由f(x)≥0恒成立,便有△=16a2-4(2a+6)≤0,这样便可解出$-1≤a≤\frac{3}{2}$,根据a的范围便可去绝对值号得到g(a)=-a2-3a+2,根据该二次函数的对称轴即可判断g(a)在区间$[-1,\frac{3}{2}]$上的单调性,从而求出g(a)的值域.
解答 解:(1)由题知f(x)的开口向上,值域为[0,+∞);
∴△=16a2-4(2a+6)=0;
∴2a2-a-3=0;
∴a=-1或a=$\frac{3}{2}$;
(2)f(x)≥0恒成立,∴△≤0;
∴16a2-4(2a+6)≤0;
解得-1≤a≤$\frac{3}{2}$;
∴g(a)=-a(a+3)+2=-a2-3a+2,(-1≤a≤$\frac{3}{2}$);
g(a)的对称轴为a=-$\frac{3}{2}$,开口向下;
∴g(a)在[-1,$\frac{3}{2}$]上是减函数,g(-1)=-1+3+2=4,g($\frac{3}{2}$)=-$\frac{9}{4}$-$\frac{9}{2}$+2=-$\frac{19}{4}$;
∴函数g(a)的值域为[-$\frac{19}{4}$,4].
点评 考查二次函数的图象和x轴的位置关系同判别式△取值的关系,解一元二次不等式,根据二次函数的对称轴判断二次函数在一闭区间上的单调性的方法,根据单调性求函数在闭区间上值域的方法,要熟悉二次函数的图象.
练习册系列答案
相关题目
2.i是虚数单位,b∈R,2+(b-1)i是实数,则复数z=$\frac{b-2i}{b+2i}$在复平面内表示的点位于( )
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
3.世界杯足球赛参赛球队共32支,先分成8个小组进行小组赛,每组4队为单循环赛制,各小组前两名小组出线,则小组赛要进行的比赛场数是( )
A. | 8$C_4^2$ | B. | 8$A_4^2$ | C. | 32 | D. | 64 |
20.已知角θ的顶点与原点重合,始边与x轴正半轴重合,终边在直线y=2x上,则tan2θ=( )
A. | -$\frac{4}{3}$ | B. | $\frac{4}{3}$ | C. | -$\frac{3}{4}$ | D. | $\frac{3}{4}$ |
1.在如图所示的方框中,每个方框涂一种颜色,且相邻的方框涂不同的颜色,现有3种不同的颜色可供选择,则不同的涂色方案共有( )
A. | 12种 | B. | 16种 | C. | 18种 | D. | 24种 |