题目内容
【题目】已知函数.
(1)若函数有两个极值点,试求实数的取值范围;
(2)若且,求证:.
【答案】(1);(2)证明见解析.
【解析】
(1)求函数导数,有2个极值点转化为方程有两解,利用导数分析,得函数大致形状,即可求解;
(2)不妨令,利用单调性知,构造函数,利用导数求其最小值即可得证.
(1)∵,
∴.
令,
函数有两个极值点,即方程有两个不相等的根,
显然时,方程不成立,即不是方程的根,
所以原方程有两个不相等的根转化为有两个不相等的根,
不妨令.
,
∴在,递减,在递增,,且时,.
∵方程有两个不等根,
图象与图象有两个不同交点,
∴只需满足
即.
(2)不妨令,
∴在递减.
,不妨令:,
∴.
令,
则,
由得,
由得,
∴在递减,在递增.
∴,
∴,
∴在递增.
∴,
当且时,.
练习册系列答案
相关题目