题目内容
【题目】已知数列{an}满足[2﹣(﹣1)n]an+[2+(﹣1)n]an+1=1+(﹣1)n×3n,则a25﹣a1= .
【答案】300
【解析】解:∵[2﹣(﹣1)n]an+[2+(﹣1)n]an+1=1+(﹣1)n×3n,
∴n=2k(k∈N*),可得:a2k+3a2k+1=1+6k,
n=2k﹣1(k∈N*),可得:3a2k﹣1+a2k=1﹣6k+3,
∴a2k+1﹣a2k﹣1=4k﹣1,
∴a25=(a25﹣a23)+(a23﹣a21)+…+(a3﹣a1)+a1
=(4×12﹣1)+(4×11﹣1)+…+(4×1﹣1)+a1= ﹣12+a1=300+a1 .
则a25﹣a1=300,
故答案为:300.
由[2﹣(﹣1)n]an+[2+(﹣1)n]an+1=1+(﹣1)n×3n,当n=2k(k∈N*),可得:a2k+3a2k+1=1+6k,n=2k﹣1(k∈N*),可得:3a2k﹣1+a2k=1﹣6k+3,于是a2k+1﹣a2k﹣1=4k﹣1,利用“累加求和”方法与等差数列的前n项和公式即可得出.
【题目】近年来城市“共享单车”的投放在我国各地迅猛发展,“共享单车”为人们出行提供了很大的便利,但也给城市的管理带来了一些困难,现某城市为了解人们对“共享单车”投放的认可度,对年龄段的人群随机抽取人进行了一次“你是否赞成投放共享单车”的问卷调查,根据调查结果得到如下统计表和各年龄段人数频率分布直方图:
组号 | 分组 | 赞成投放的人数 | 赞成投放的人数占本组的频率 |
第一组 | |||
第二组 | |||
第三组 | |||
第四组 | |||
第五组 | |||
第六组 |
()求, , 的值.
()在第四、五、六组“赞成投放共享单车”的人中,用分层抽样的方法抽取人参加“共享单车”骑车体验活动,求第四、五、六组应分别抽取的人数.
()在()中抽取的人中随机选派人作为领队,求所选派的人中第五组至少有一人的概率.