题目内容
【题目】对于函数,若存在实数对,使得等式对定义域中的任意都成立,则称函数是“型函数”.
(1)若函数是“型函数”,且,求出满足条件的实数对;
(2)已知函数.函数是“型函数”,对应的实数对为,当时,.若对任意时,都存在,使得,试求的取值范围.
【答案】(1); (2).
【解析】
(1)利用定义,直接判断求解即可.
(2)由题意得,g(1+x)g(1﹣x)=4,所以当时,,其中, 所以只需使当时,恒成立即可,即在上恒成立,若,显然不等式在上成立,若,分离参数m,分别求得不等式右边的函数的最值,取交集即可得到m的范围.
(1)由题意,若是“(a,b)型函数”,则,即,
代入得 ,所求实数对为.
(2)由题意得:的值域是值域的子集,易知在的值域为,
只需使当时,恒成立即可,,即,
而当时,, 故由题意可得,要使当时,都有,
只需使当时,恒成立即可,
即在上恒成立,
若,显然不等式在上成立,
若,则可将不等式转化为,
因此只需上述不等式组在上恒成立,显然,当时,不等式(1)成立,
令 在上单调递增,∴,
故要使不等式(2)恒成立,只需即可,综上所述,所求的取值范围是.
练习册系列答案
相关题目
【题目】随着手机的普及,大学生迷恋手机的现象非常严重.为了调查双休日大学生使用手机的时间,某机构采用不记名方式随机调查了使用手机时间不超过小时的名大学生,将人使用手机的时间分成组:,,,,分别加以统计,得到下表,根据数据完成下列问题:
使用时间/时 | |||||
大学生/人 |
(1)完成频率分布直方图;
(2)根据频率分布直方图估计大学生使用手机的平均时间.