题目内容
已知函数f(x)=ax+ln x,其中a为常数,e为自然对数的底数.
(1)当a=-1时,求f(x)的最大值;
(2)当a=-1时,试推断方程|f(x)|=+是否有实数解,并说明理由.
(1)当a=-1时,求f(x)的最大值;
(2)当a=-1时,试推断方程|f(x)|=+是否有实数解,并说明理由.
(1) -1 (2) 没有,理由见解析
解:(1)当a=-1时,f(x)=-x+ln x,
f′(x)=-1+=.
当0<x<1时,f′(x)>0;
当x>1时,f′(x)<0.
∴f(x)在区间(0,1)上是增函数,在区间(1,+∞)上是减函数.
f(x)max=f(1)=-1.
(2)由(1)知当a=-1时,
f(x)max=f(1)=-1,∴|f(x)|≥1.
令g(x)=+,则g′(x)=,
令g′(x)=0,得x=e,
当0<x<e时,g′(x)>0,g(x)在区间(0,e)上单调递增;
当x>e时,g′(x)<0,g(x)在区间(e,+∞)上单调递减.
∴g(x)max=g(e)=+<1,
∴g(x)<1.∴|f(x)|>g(x)恒成立,
即|f(x)|>+恒成立.
∴方程|f(x)|=+没有实数解.
f′(x)=-1+=.
当0<x<1时,f′(x)>0;
当x>1时,f′(x)<0.
∴f(x)在区间(0,1)上是增函数,在区间(1,+∞)上是减函数.
f(x)max=f(1)=-1.
(2)由(1)知当a=-1时,
f(x)max=f(1)=-1,∴|f(x)|≥1.
令g(x)=+,则g′(x)=,
令g′(x)=0,得x=e,
当0<x<e时,g′(x)>0,g(x)在区间(0,e)上单调递增;
当x>e时,g′(x)<0,g(x)在区间(e,+∞)上单调递减.
∴g(x)max=g(e)=+<1,
∴g(x)<1.∴|f(x)|>g(x)恒成立,
即|f(x)|>+恒成立.
∴方程|f(x)|=+没有实数解.
练习册系列答案
相关题目