题目内容

设函数f(x)的导函数为f′(x),对任意x∈R都有f′(x)>f(x)成立,则(  )
A.3f(ln 2)>2f(ln 3)B.3f(ln 2)=2f(ln 3)
C.3f(ln 2)<2f(ln 3)D.3f(ln 2)与2f(ln 3)的大小不确定
C
构造函数g(x)=,则g′(x)= >0,函数g(x)在R上单调递增,所以g(ln 2)<g(ln 3),即,即3f(ln 2)<2f(ln 3)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网