题目内容

已知函数f(x)=ax3x2cxd(acd∈R)满足f(0)=0,f′(1)=0,且f′(x)≥0在R上恒成立.
(1)求acd的值;
(2)若h(x)=x2bx,解不等式f′(x)+h(x)<0.
(1)ac d=0(2)当b>时,解集为,当b<时,解集为,当b时,解集为∅
(1)∵f(0)=0,∴d=0,∵f′(x)=ax2xc.又f′(1)=0,∴ac.∵f′(x)≥0在R上恒成立,即ax2xc≥0恒成立,∴ax2xa≥0恒成立,显然当a=0时,上式不恒成立.∴a≠0,
 
解得ac.
(2)由(1)知f′(x)=x2x.
f′(x)+h(x)<0,得x2xx2bx<0,即x2x<0,
即(xb) <0,当b>时,解集为
b<时,解集为,当b时,解集为∅
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网