题目内容
设f (x)=|2-x2|,若0<a<b且f (a)="f" (b),则a+b的取值范围是( )
A.(0,2) | B.(, 2) | C.(2,4) | D.(2,2) |
D
解:
当x<0时,f(x)= -x2+2(- 2 <x<0)
x2-2(x≤- 2 )
∴f(x)在(-∞,- 2 )递增;在(- 2 ,0)
∵a<b<0,且f(a)=f(b),
∴-a≤- ,b>2-且a2-2="-" a2+2
解得a= ;2- <b<
故选D
当x<0时,f(x)= -x2+2(- 2 <x<0)
x2-2(x≤- 2 )
∴f(x)在(-∞,- 2 )递增;在(- 2 ,0)
∵a<b<0,且f(a)=f(b),
∴-a≤- ,b>2-且a2-2="-" a2+2
解得a= ;2- <b<
故选D
练习册系列答案
相关题目