题目内容

(2013•静安区一模)已知向量
满足条件:
≠0
.若对于任意实数t,恒有|
-t
|≥|
-
|
,则在
+
-
这四个向量中,一定具有垂直关系的两个向量是(  )
分析:把已知不等式平方可得对于任意实数t,不等式(t+1)
b
2
≥2
a
b
恒成立,故有
b
2
=
a
b
=0,即
b
•(
a
-
b
)=0,可得
b
a
-
b
一定垂直,从而得出结论.
解答:解:把已知不等式平方可得 a2-2t
a
b
+t2
b
2
a
2
+
b
2
-2
a
b

化简可得 (t2-1)
b
2
≥2(t-1)
a
b
,即 (t+1)
b
2
≥2
a
b

由题意可得,对于任意实数t,(t+1)
b
2
≥2
a
b
恒成立,故有
b
2
=
a
b
=0,
b
•(
a
-
b
)=0,
b
 与
a
-
b
一定垂直,
故选B.
点评:本题主要考查两个向量的数量积公式,求向量的模,两个向量垂直的条件,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网