题目内容
【题目】已知椭圆过点,且短轴长为.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点作轴的垂线,设点为第四象限内一点且在椭圆上(点不在直线上),点关于的对称点为,直线与椭圆交于另一点.设为坐标原点,判断直线与直线的位置关系,并说明理由.
【答案】(Ⅰ)(Ⅱ)直线与直线平行,说明见解析
【解析】
(Ⅰ)根据短轴长和椭圆上的点构造方程组,求解得到,从而得到标准方程;(Ⅱ)根据与关于对称,可知直线与斜率互为相反数;假设方程,与椭圆方程联立,利用韦达定理得两根之积为,从而求得,同理可得,从而可求得,再利用直线方程求得;根据两点连线斜率公式得到,从而可得直线与直线平行.
(Ⅰ)由题意的:,解得,
椭圆的方程为
(Ⅱ)直线与直线平行,证明如下:
由题意,直线的斜率存在且不为零
关于对称,则直线与斜率互为相反数
设直线,
设,
由,消去得
同理
,
又
故直线与直线平行
练习册系列答案
相关题目
【题目】为了研究学生的数学核素养与抽象(能力指标)、推理(能力指标)、建模(能力指标)的相关性,并将它们各自量化为1、2、3三个等级,再用综合指标的值评定学生的数学核心素养;若,则数学核心素养为一级;若,则数学核心素养为二级;若,则数学核心素养为三级,为了了解某校学生的数学核素养,调查人员随机访问了某校10名学生,得到如下结果:
学生编号 | ||||||||||
(1)在这10名学生中任取两人,求这两人的建模能力指标相同的概率;
(2)从数学核心素养等级是一级的学生中任取一人,其综合指标为,从数学核心素养等级不是一级的学生中任取一人,其综合指标为,记随机变量,求随机变量的分布列及其数学期望.