题目内容
【题目】如图,已知, ,且是的中点,.
(1)求证:;
(2)求证:平面平面;
(3)求与平面所成角的正弦值.
【答案】(1)证明见解析;(2)证明见解析;(3)。
【解析】
(1)取的中点,可以利用中位线定理,根据已知的平行关系和长度关系,可以得到一个平行四边形,利用平行四边形的对边平行,这样得到线线平行,也就能证明出线面平行;
(2)通过已知和(1)可知,通过线面垂直和平行线的性质,可以这样可以证明出线面垂直,而从而证明出平面利用面面垂直的判定定理可以证明出平面平面;
(3)通过(2)证明出的线面垂直关系,找到线面角,利用勾股定理、平行四边形的性质,求出相关的边,利用正弦的定义,求出与平面所成角的正弦值。
(1)如上图,取的中点,连接,
由是的中点,且又,且
且. 是平行四边形,从而,
又平面,平面, 因此;
(2)证明:是的中点,,
因为平面,,所以平面,
又平面 而 平面
由可知平面 平面,平面平面;
(3)由(2)知平面 是在平面的射影,则与平面所成的角为,因为,所以,由(1)可知:
是平行四边形,从而,
在中,
与平面所成角的正弦值是。
练习册系列答案
相关题目
【题目】为了解某班学生喜欢数学是否与性别有关,对本班人进行了问卷调查得到了如下的列联表,已知在全部人中随机抽取人抽到喜欢数学的学生的概率为.
喜欢数学 | 不喜欢数学 | 合计 | |
男生 | |||
女生 | |||
合计 |
(1)请将上面的列联表补充完整(不用写计算过程);
(2)能否在犯错误的概率不超过的前提下认为喜欢数学与性别有关?说明你的理由;
(3)现从女生中抽取人进一步调查,设其中喜欢数学的女生人数为,求的分布列与期望.
下面的临界表供参考:
(参考公式:,其中)