题目内容
【题目】某校为提高学生的身体素质,实施“每天一节体育课”,并定期对学生进行体能测验在一次体能测验中,某班甲、乙、丙三位同学的成绩(单位:分)及班内排名如表(假定成绩均为整数)现从该班测验成绩为94和95的同学中随机抽取两位,这两位同学成绩相同的概率是( )
成绩/分 | 班内排名 | |
甲 | 95 | 9 |
乙 | 94 | 11 |
丙 | 93 | 14 |
A.0.2B.0.4C.0.5D.0.6
【答案】B
【解析】
由题意可得出成绩为95分的有2人,94分的有3人,本题是古典概型,求出事件包含的基本事件数以及基本事件的总数,从而求出答案.
解:由表格可知,该班成绩为95分的有2人,94分的有3人,
∴从这5名同学中随机抽取2名同学,
基本事件总数为,
这两位同学成绩相同包含的基本事件数是,
∴这两位同学成绩相同的概率,
故选:B.
![](http://thumb.zyjl.cn/images/loading.gif)
【题目】某公司为了预测下月产品销售情况,找出了近7个月的产品销售量(单位:万件)的统计表:
月份代码 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
销售量 |
但其中数据污损不清,经查证,
,
.
(1)请用相关系数说明销售量与月份代码
有很强的线性相关关系;
(2)求关于
的回归方程(系数精确到0.01);
(3)公司经营期间的广告宣传费(单位:万元)(
),每件产品的销售价为10元,预测第8个月的毛利润能否突破15万元,请说明理由.(毛利润等于销售金额减去广告宣传费)
参考公式及数据:,相关系数
,当
时认为两个变量有很强的线性相关关系,回归方程
中斜率和截距的最小二乘估计公式分别为
,
.
【题目】为了节能减排,发展低碳经济,我国政府从2001年起就通过相关政策推动新能源汽车产业发展.下面的图表反映了该产业发展的相关信息:
中国新能源汽车产销情况一览表 | ||||
新能源汽车生产情况 | 新能源汽车销售情况 | |||
产品(万辆) | 比上年同期 | 销量(万辆) | 比上年同期 | |
2018年3月 | 6.8 | 105 | 6.8 | 117.4 |
4月 | 8.1 | 117.7 | 8.2 | 138.4 |
5月 | 9.6 | 85.6 | 10.2 | 125.6 |
6月 | 8.6 | 31.7 | 8.4 | 42.9 |
7月 | 9 | 53.6 | 8.4 | 47.7 |
8月 | 9.9 | 39 | 10.1 | 49.5 |
9月 | 12.7 | 64.4 | 12.1 | 54.8 |
10月 | 14.6 | 58.1 | 13.8 | 51 |
11月 | 17.3 | 36.9 | 16.9 | 37.6 |
1-12月 | 127 | 59.9 | 125.6 | 61.7 |
2019年1月 | 9.1 | 113 | 9.6 | 138 |
2月 | 5.9 | 50.9 | 5.3 | 53.6 |
根据上述图表信息,下列结论错误的是( )
A.2017年3月份我国新能源汽车的产量不超过万辆
B.2017年我国新能源汽车总销量超过万辆
C.2018年8月份我国新能源汽车的销量高于产量
D.2019年1月份我国插电式混合动力汽车的销量低于万辆