题目内容

【题目】已知函数f(x)= 是偶函数,则下列结论可能成立的是(
A. ??
B.
C. ??
D.

【答案】B
【解析】解:根据题意,设x>0,则﹣x<0, 则有f(x)=sin(x+α),f(﹣x)=cos(﹣x﹣β),
又由函数f(x)是偶函数,则有sin(x+α)=cos(﹣x﹣β),
变形可得:sin(x+α)=cos(x+β),
即sinxcosα+cosxsinα=cosxcosβ﹣sinxsinβ,
必有:sinα=cosβ,cosα=﹣sinβ,
分析可得:α=β+
分析选项只有B满足α=β+
故选:B.
【考点精析】认真审题,首先需要了解函数奇偶性的性质(在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网