ÌâÄ¿ÄÚÈÝ
14£®ÒÑÖªÅ×ÎïÏßE£ºy2=2px£¨p£¾0£©µÄ×¼ÏßÓëxÖá½»ÓÚµãK£¬¹ýµãK×÷Ô²C£º£¨x-2£©2+y2=1µÄÁ½ÌõÇÐÏߣ¬ÇеãΪM£¬N£¬|MN|=$\frac{4\sqrt{2}}{3}$£¨1£©ÇóÅ×ÎïÏßEµÄ·½³Ì
£¨2£©ÉèA¡¢BÊÇÅ×ÎïÏßEÉÏ·Ö±ðλÓÚxÖáÁ½²àµÄÁ½¸ö¶¯µã£¬ÇÒ$\overrightarrow{OA}$$•\overrightarrow{OB}$=$\frac{9}{4}$£¨ÆäÖÐOΪ×ø±êԵ㣩
¢ÙÇóÖ¤£ºÖ±ÏßAB±Ø¹ý¶¨µã£¬²¢Çó³ö¸Ã¶¨µãQµÄ×ø±ê
¢Ú¹ýµãQ×÷ABµÄ´¹ÏßÓëÅ×ÎïÏß½»ÓÚG¡¢DÁ½µã£¬ÇóËıßÐÎAGBDÃæ»ýµÄ×îСֵ£®
·ÖÎö £¨1£©ÇóµÃKµÄ×ø±ê£¬Ô²µÄÔ²ÐĺͰ뾶£¬ÔËÓöԳÆÐԿɵÃMRµÄ³¤£¬Óɹ´¹É¶¨ÀíºÍÈñ½ÇµÄÈý½Çº¯Êý£¬¿ÉµÃCK=3£¬ÔÙÓɵ㵽ֱÏߵľàÀ빫ʽ¼´¿ÉÇóµÃp=2£¬½ø¶øµÃµ½Å×ÎïÏß·½³Ì£»
£¨2£©¢ÙÉè³öÖ±Ïß·½³Ì£¬ÁªÁ¢Å×ÎïÏß·½³Ì£¬ÔËÓÃΤ´ï¶¨ÀíºÍÏòÁ¿µÄÊýÁ¿»ýµÄ×ø±ê±íʾ£¬»¯¼òÕûÀí£¬¼´¿ÉµÃµ½¶¨µãQ£»
¢ÚÔËÓÃÏÒ³¤¹«Ê½ºÍËıßÐεÄÃæ»ý¹«Ê½£¬»»ÔªÕûÀí£¬½áºÏ»ù±¾²»µÈʽ£¬¼´¿ÉÇóµÃ×îСֵ£®
½â´ð £¨1£©½â£ºÓÉÒÑÖª¿ÉµÃK£¨-$\frac{p}{2}$£¬0£©£¬Ô²C£º£¨x-2£©2+y2=1µÄÔ²ÐÄC£¨2£¬0£©£¬°ë¾¶r=1£®
ÉèMNÓëxÖá½»ÓÚR£¬ÓÉÔ²µÄ¶Ô³ÆÐԿɵÃ|MR|=$\frac{2\sqrt{2}}{3}$£¬
ÓÚÊÇ|CR|=$\sqrt{M{C}^{2}-M{R}^{2}}$=$\sqrt{1-\frac{8}{9}}$=$\frac{1}{3}$£¬
¼´ÓÐ|CK|=$\frac{|MC|}{sin¡ÏMKC}$=$\frac{|MC|}{sin¡ÏCMR}$=$\frac{1}{\frac{1}{3}}$=3£¬
¼´ÓÐ2+$\frac{p}{2}$=3£¬½âµÃp=2£¬ÔòÅ×ÎïÏßEµÄ·½³ÌΪy2=4x£»
£¨2£©¢ÙÖ¤Ã÷£ºÉèÖ±ÏßAB£ºx=my+t£¬A£¨$\frac{{{y}_{1}}^{2}}{4}$£¬y1£©£¬B£¨$\frac{{{y}_{2}}^{2}}{4}$£¬y2£©£¬
ÁªÁ¢Å×ÎïÏß·½³Ì¿ÉµÃy2-4my-4t=0£¬
y1+y2=4m£¬y1y2=-4t£¬
$\overrightarrow{OA}$$•\overrightarrow{OB}$=$\frac{9}{4}$£¬¼´ÓУ¨$\frac{{y}_{1}{y}_{2}}{4}$£©2+y1y2=$\frac{9}{4}$£¬
½âµÃy1y2=-18»ò2£¨ÉáÈ¥£©£¬
¼´-4t=-18£¬½âµÃt=$\frac{9}{2}$£®
ÔòÓÐABºã¹ý¶¨µãQ£¨$\frac{9}{2}$£¬0£©£»
¢Ú½â£ºÓɢٿɵÃ|AB|=$\sqrt{1+{m}^{2}}$|y2-y1|=$\sqrt{1+{m}^{2}}$•$\sqrt{16{m}^{2}+72}$£¬
ͬÀí|GD|=$\sqrt{1+£¨-\frac{1}{m}£©^{2}}$|y2-y1|=$\sqrt{1+\frac{1}{{m}^{2}}}$•$\sqrt{\frac{16}{{m}^{2}}+72}$£¬
ÔòËıßÐÎAGBDÃæ»ýS=$\frac{1}{2}$|AB|•|GD|=$\frac{1}{2}$$\sqrt{1+{m}^{2}}$•$\sqrt{16{m}^{2}+72}$•$\sqrt{1+\frac{1}{{m}^{2}}}$•$\sqrt{\frac{16}{{m}^{2}}+72}$
=4$\sqrt{£¨2+£¨{m}^{2}+\frac{1}{{m}^{2}}£©£©£¨85+18£¨{m}^{2}+\frac{1}{{m}^{2}}£©£©}$£¬
Áîm2+$\frac{1}{{m}^{2}}$=¦Ì£¨¦Ì¡Ý2£©£¬ÔòS=4$\sqrt{18{¦Ì}^{2}+121¦Ì+170}$ÊǹØÓڦ̵ÄÔöº¯Êý£¬
Ôòµ±¦Ì=2ʱ£¬SÈ¡µÃ×îСֵ£¬ÇÒΪ88£®
µ±ÇÒ½öµ±m=¡À1ʱ£¬ËıßÐÎAGBDÃæ»ýµÄ×îСֵΪ88£®
µãÆÀ ±¾Ì⿼²éÅ×ÎïÏߵķ½³ÌºÍÐÔÖÊ£¬Ö÷Òª¿¼²éÅ×ÎïÏß·½³ÌºÍÖ±Ïß·½³ÌÁªÁ¢£¬ÔËÓÃΤ´ï¶¨ÀíºÍÏÒ³¤¹«Ê½£¬Í¬Ê±¿¼²éÖ±ÏߺÍÔ²µÄλÖùØϵ£¬ÏòÁ¿µÄÊýÁ¿»ýµÄ×ø±ê±íʾ£¬¾ßÓÐÒ»¶¨µÄÔËËãÁ¿£¬ÊôÓÚÖеµÌ⣮
A£® | -$\frac{7}{5}$ | B£® | $\frac{7}{5}$ | C£® | -$\frac{3}{5}$ | D£® | $\frac{3}{5}$ |
A£® | $\frac{1}{2}$$\overrightarrow{CA}$+$\frac{1}{2}$$\overrightarrow{CB}$ | B£® | 2$\overrightarrow{CA}$-2$\overrightarrow{CB}$ | C£® | $\frac{1}{3}$$\overrightarrow{CA}$+$\frac{2}{3}$$\overrightarrow{CB}$ | D£® | $\frac{2}{3}$$\overrightarrow{CA}$+$\frac{1}{3}$$\overrightarrow{CB}$ |
A£® | ³ä·Ö·Ç±ØÒªÌõ¼þ | B£® | ±ØÒª·Ç³ä·ÖÌõ¼þ | ||
C£® | ³ä·Ö±ØÒªÌõ¼þ | D£® | ·Ç³ä·Ö·Ç±ØÒªÌõ¼þ |
A£® | -28 | B£® | -21 | C£® | 21 | D£® | 28 |
A£® | $\frac{2}{3}$ | B£® | $\frac{5}{9}$ | C£® | $\frac{1}{2}$ | D£® | $\frac{1}{3}$ |