题目内容
【题目】把函数 的图象上每个点的横坐标扩大到原来的4倍,再向左平移 ,得到函数g(x)的图象,则函数g(x)的一个单调递减区间为( )
A.
B. ??
C.
D.
【答案】B
【解析】解:把函数 的图象上每个点的横坐标扩大到原来的4倍,可得y= sin( x﹣ )的图象, 再向左平移 ,得到函数g(x)= sin[ (x+ )﹣ ]= sin( x﹣ )的图象,
令2kπ+ ≤ x﹣ ≤2kπ+ ,求得4kπ+ ≤x≤4kπ+ ,
故函数g(x)的单调递减区间为[4kπ+ ,4kπ+ ],k∈Z,
令k=0,可得函数g(x)的一个单调递减区间为[ , ],
故选:B.
【考点精析】解答此题的关键在于理解函数y=Asin(ωx+φ)的图象变换的相关知识,掌握图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象.
练习册系列答案
相关题目
【题目】某项科研活动共进行了5次试验,其数据如表所示:
特征量 | 第1次 | 第2次 | 第3次 | 第4次 | 第5次 |
x | 555 | 559 | 551 | 563 | 552 |
y | 601 | 605 | 597 | 599 | 598 |
(Ⅰ)从5次特征量y的试验数据中随机地抽取两个数据,求至少有一个大于600的概率;
(Ⅱ)求特征量y关于x的线性回归方程 ;并预测当特征量x为570时特征量y的值.
(附:回归直线的斜率和截距的最小二乘法估计公式分别为 = , )