题目内容
【题目】已知函数f(x)=ex(x2+x+1),求函数f(x)的单调区间及极值.
【答案】解:函数f(x)的定义域为R. 当a=1时,f'(x)=ex(x+2)(x+1)…(2分)
当x变化时,f'(x),f(x)的变化情况如表:
x | (﹣∞,﹣2) | ﹣2 | (﹣2,﹣1) | ﹣1 | (﹣1,+∞) |
f'(x) | + | 0 | ﹣ | 0 | + |
f(x) | ↗ | 极大值 | ↘ | 极小值 | ↗ |
函数f(x)的单调递增区间为(﹣∞,﹣2),(﹣1,+∞),
函数f(x)的单调递减区间为(﹣2,﹣1).
函数的极大值为:f(﹣2)= .
极小值为:f(﹣1)=
【解析】求出函数的定义域以及函数的导数,求出极值点,通过列表判断函数的导数的符号,推出函数的单调性求解函数的极值即可.
【考点精析】掌握利用导数研究函数的单调性和函数的极值与导数是解答本题的根本,需要知道一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减;求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值.
练习册系列答案
相关题目