题目内容
【题目】某中学有教师400人,其中高中教师240人.为了了解该校教师每天课外锻炼时间,现利用分层抽样的方法从该校教师中随机抽取了100名教师进行调查,统计其每天课外锻炼时间(所有教师每天课外锻炼时间均在分钟内),将统计数据按,,,…,分成6组,制成频率分布直方图如下:
假设每位教师每天课外锻炼时间相互独立,并称每天锻炼时间小于20分钟为缺乏锻炼.
(1)试估计本校教师中缺乏锻炼的人数;
(2)若从参与调查,且每天课外锻炼时间在内的该校教师中任取2人,求至少有1名初中教师被选中的概率.
【答案】(1)人.(2)
【解析】
(1)先求得样本中初中、高中教师缺乏锻炼的频率,由此计算出该校教师中缺乏锻炼的人数.利用列举法,结合古典概型概率计算公式,计算出所求概率.
(2)利用列举法,结合古典概型概率计算公式,计算出所求概率.
(1)由题意可得样本中初中教师缺乏锻炼的频率为,
样本中高中教师缺乏锻炼的频率为,
估计该校教师中缺乏锻炼的人数为.
(2)由题意可参与调查初中教师每天课外锻炼时间在的人数为,记为,;
高中教师每天课外锻炼时间在的人数为,记为,,.
从这5人中选取2人的情况有,,,,,,,
,,,共10种;
其中符合条件的情况有,,,,,,,共7种.
故所求概率.
【题目】某公司A产品生产的投入成本x(单位:万元)与产品销售收入y(单位:十万元)存在较好的线性关系,下表记录了该公司最近8次该产品的相关数据,且根据这8组数据计算得到y关于x的线性回归方程为.
x(万元) | 6 | 7 | 8 | 11 | 12 | 14 | 17 | 21 |
y(十万元) | 1.2 | 1.5 | 1.7 | 2 | 2.2 | 2.4 | 2.6 | 2.9 |
(1)求的值(结果精确到0.0001),并估计公司A产品投入成本30万元后产品的销售收入(单位:十万元).
(2)该公司B产品生产的投入成本u(单位:万元)与产品销售收入v(单位:十万元)也存在较好的线性关系,且v关于u的线性回归方程为.
(i)估计该公司B产品投入成本30万元后的毛利率(毛利率);
(ii)判断该公司A,B两个产品都投入成本30万元后,哪个产品的毛利率更大.
【题目】我国新型冠状病毒肺炎疫情期间,以网络购物和网上服务所代表的新兴消费展现出了强大的生命力,新兴消费将成为我国消费增长的新动能.某市为了了解本地居民在2020年2月至3月两个月网络购物消费情况,在网上随机对1000人做了问卷调查,得如下频数分布表:
网购消费情况(元) | |||||
频数 | 300 | 400 | 180 | 60 | 60 |
(1)作出这些数据的频率分布直方图,并估计本市居民此期间网络购物的消费平均值;
(2)在调查问卷中有一项是填写本人年龄,为研究网购金额和网购人年龄的关系,以网购金额是否超过4000元为标准进行分层抽样,从上述1000人中抽取200人,得到如下列联表,请将表补充完整并根据列联表判断,在此期间是否有95%的把握认为网购金额与网购人年龄有关.
网购不超过4000元 | 网购超过4000元 | 总计 | |
40岁以上 | 75 | 100 | |
40岁以下(含40岁) | |||
总计 | 200 |
参考公式和数据:.(其中为样本容量)
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |