题目内容
(理科)(本小题满分12分)如图分别是正三棱台ABC-A1B1C1的直观图和正视图,O,O1分别是上下底面的中心,E是BC中点.
(1)求正三棱台ABC-A1B1C1的体积;
(2)求平面EA1B1与平面A1B1C1的夹角的余弦;
(3)若P是棱A1C1上一点,求CP+PB1的最小值.
(1)求正三棱台ABC-A1B1C1的体积;
(2)求平面EA1B1与平面A1B1C1的夹角的余弦;
(3)若P是棱A1C1上一点,求CP+PB1的最小值.
(1);
(2);(3)最小值为。
(2);(3)最小值为。
试题分析:(1)由题意,正三棱台高为 ..2分
..4分
(2)设分别是上下底面的中心,是中点,是中点.以 为原点,过平行的线为轴建立空间直角坐标系. ,, ,,,,,
设平面的一个法向量,则即
取,取平面的一个法向
量,设所求角为
则 ..8分
(3)将梯形绕旋转到,使其与成平角
,由余弦定理得
即的最小值为 ..13分
点评:中档题,立体几何题,是高考必考内容,往往涉及垂直关系、平行关系、角、距离、体积的计算。在计算问题中,有“几何法”和“向量法”。利用几何法,要遵循“一作、二证、三计算”的步骤。利用向量则简化了证明过程,对计算能力要求高。
练习册系列答案
相关题目