题目内容
3.某由圆柱切割获得的几何体的三视图如图所示,其中俯视图是中心角为60°的扇形,则该几何体的体积为( )A. | 2π | B. | π | C. | $\frac{2π}{3}$ | D. | $\frac{π}{3}$ |
分析 由三视图知几何体为圆柱的一部分,且圆柱的高为3,底面圆的半径为2,根据正视图与俯视图可判断底面扇形的中心角为60°,求出圆柱的体积乘以$\frac{1}{6}$可得答案.
解答 解:由三视图知几何体为圆柱的一部分,且圆柱的高为3,底面圆的半径为2,
由正视图与俯视图判断底面扇形的中心角为60°,
∴几何体的体积V=$\frac{1}{6}$×π×22×3=2π,
故选:A.
点评 本题考查了由三视图求几何体的体积,解答的关键是判断几何体的形状及数据所对应的几何量.
练习册系列答案
相关题目
5.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为$\frac{π}{3}$,|$\overrightarrow{a}$|=1,且对任意实数x,不等式|x$\overrightarrow{a}$+2$\overrightarrow{b}$|≥|$\overrightarrow{a}$+$\overrightarrow{b}$|恒成立,则|$\overrightarrow{b}$|的取值范围是( )
A. | [$\frac{1}{2}$,+∞) | B. | ($\frac{1}{2}$,+∞) | C. | [1,+∞) | D. | (1,+∞) |
11.下列函数中是奇函数的是( )
A. | y=$\frac{1}{x}$ | B. | y=x2+1 | C. | y=2x | D. | y=log2x |
8.已知f(x)是定义在R上的偶函数,若命题p:?x∈R,f(-x)=f(|x|),则?p为( )
A. | ?x0∈R,f(-x0)≠f(|x0|) | B. | ?x∈R,f(-x)≠f(|x|) | ||
C. | ?x0∈R,f(-x0)=f(|x0|) | D. | 不存在x0∈R,f(-x0)=f(|x0|) |