题目内容
【题目】已知数列是等比数列, 为数列的前项和,且
(1)求数列的通项公式.
(2)设且为递增数列.若求证:
【答案】(1)当时, ;当时, ;(2)证明过程见解析;
【解析】试题分析:(1)设数列的公式为 ,从而可得 ,求出 的值,从而可得结果;(2)讨论可知 ,考虑为递增数列,从而可得 ,利用裂项相消法求和,再用放缩法证明即可.
试题解析:(1)设等比数列的公比为.由已知:
,解得或
当时,
当时,
(2) 为递增数列, 不合题意
当时, 符合题意.
【方法点晴】裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,掌握一些常见的裂项技巧:①;②
;③;
④;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.
【题目】为及时了解适龄公务员对开放生育二胎政策的态度,某部门随机调查了90位30岁到40岁的公务员,得到情况如下表:
(1)判断是否有99%以上的把握认为“生二胎意愿与性别有关”,并说明理由;
(2)现把以上频率当作概率,若从社会上随机独立抽取三位30岁到40岁的男公务员访问,求这三人中至少有一人有意愿生二胎的概率.
(3)已知15位有意愿生二胎的女性公务员中有两位来自省妇联,该部门打算从这15位有意愿生二胎的女性公务员中随机邀请两位来参加座谈,设邀请的2人中来自省女联的人数为,求的分布列及数学期望.
男性公务员 | 女性公务员 | 总计 | |
有意愿生二胎 | 30 | 15 | 45 |
无意愿生二胎 | 20 | 25 | 45 |
总计 | 50 | 40 | 90 |
附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
【题目】某校高二奥赛班名学生的物理测评成绩(满分120分)分布直方图如下,已知分数在100-110的学生数有21人.
(1)求总人数和分数在110-115分的人数;
(2)现准备从分数在110-115的名学生(女生占)中任选3人,求其中恰好含有一名女生的概率;
(3)为了分析某个学生的学习状态,对其下一阶段的学生提供指导性建议,对他前7次考试的数学成绩(满分150分),物理成绩进行分析,下面是该生7次考试的成绩.
数学 | 88 | 83 | 117 | 92 | 108 | 100 | 112 |
物理 | 94 | 91 | 108 | 96 | 104 | 101 | 106 |
已知该生的物理成绩与数学成绩是线性相关的,若该生的数学成绩达到130分,请你估计他的物理成绩大约是多少?
附:对于一组数据,……,其回归线的斜率和截距的最小二乘估计分别为:,.