题目内容
【题目】如图,扇形的半径为r cm,周长为20cm,问扇形的圆心角α等于多少弧度时,这个扇形的面积最大,并求出扇形面积的最大值.
【答案】解:设扇形的半径为r,弧长为l,则:l+2r=20,即l=20﹣2r(0<r<10). 扇形的面积S= lr,将上式代入,得:S= (20﹣2r)r=﹣r2+10r=﹣(r﹣5)2+25,
所以:当且仅当r=5时,S有最大值25,
此时:l=20﹣2×5=10,α= =2rad.
所以:当α=2rad时,扇形的面积取最大值,最大值为25cm2
【解析】设扇形的半径为r,弧长为l,利用周长关系,表示出扇形的面积,利用二次函数求出面积的最大值,以及圆心角的大小.
【考点精析】本题主要考查了扇形面积公式的相关知识点,需要掌握若扇形的圆心角为,半径为,弧长为,周长为,面积为,则,,才能正确解答此题.
练习册系列答案
相关题目
【题目】已知数列{xn}满足x1=1,x2=λ,并且 =λ (λ为非零常数,n=2,3,4,…). (Ⅰ)若x1 , x3 , x5成等比数列,求λ的值;
(Ⅱ)设0<λ<1,常数k∈N* , 证明 .
【题目】【2015高考山东文数】某中学调查了某班全部名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)
参加书法社团 | 未参加书法社团 | |
参加演讲社团 | ||
未参加演讲社团 |
(1)从该班随机选名同学,求该同学至少参加上述一个社团的概率;
(2)在既参加书法社团又参加演讲社团的名同学中,有5名男同学名女同学现从这名男同学和名女同学中各随机选人,求被选中且未被选中的概率.