题目内容

(本小题满分16分)已知数列{an}满足a1=0,a2=2,且对任意mnN*都有

(1)求a3a5
(2)设(nN*),证明:数列{bn}是等差数列;
(3)设cnqn-1(q≠0,nN*),求数列{cn}的前n项和Sn.
,6,20,Sn
解:(1)由题意,零m=2,n-1,可得a3=2a2a1+2=6
再令m=3,n=1,可得a5=2a3a1+8=20………………………………4分
(2)当nN*时,由已知(以n+2代替m)可得     
a2n+3a2n-1=2a2n+1+8
于是[a2(n+1)+1a2(n+1)-1]-(a2n+1a2n-1)=8
即 bn+1bn=8
所以{bn}是公差为8的等差数列………………………………………………8分
(3)由(1)(2)解答可知{bn}是首项为b1a3a1=6,公差为8的等差数列
bn=8n-2,即a2n+=1a2n-1=8n-2………………………………………10分
于是cn=2nqn-1.
q=1时,Sn=2+4+6+……+2nn(n+1)
q≠1时,Sn=2·q0+4·q1+6·q2+……+2n·qn-1.
两边同乘以q,可得
qSn=2·q1+4·q2+6·q3+……+2n·qn.
上述两式相减得
(1-q)Sn=2(1+qq2+……+qn-1)-2nqn
=2·-2nqn
=2·
所以Sn=2·
综上所述,Sn…………………………16分
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网