题目内容
【题目】某公司为了提高利润,从2012年至2018年每年对生产环节的改进进行投资,投资金额与年利润增长的数据如下表:
年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
投资金额(万元) | |||||||
年利润增长(万元) |
(1)请用最小二乘法求出关于的回归直线方程;如果2019年该公司计划对生产环节的改进的投资金额为万元,估计该公司在该年的年利润增长为多少?(结果保留两位小数)
(2)现从2012年—2018年这年中抽出三年进行调查,记年利润增长投资金额,设这三年中(万元)的年份数为,求随机变量的分布列与期望.
参考公式:.
参考数据:,.
【答案】(1) ,11.43万元(2)见解析
【解析】
(1)先求,,代入公式求得;由(,)在回归直线上求得即可;(2)列出年份与的表格,得到的可能取值为1,2,3,分别计算概率,写出分布列,求出期望即可.
(Ⅰ),,,
那么回归直线方程为:
将代入方程得
即该公司在该年的年利润增长大约为11.43万元.
(Ⅱ)由题意可知,
年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
1.5 | 2 | 1.9 | 2.1 | 2.4 | 2.6 | 3.6 |
的可能取值为1,2,3, ;
;
则分布列为
1 | 2 | 3 | |
P |
【题目】某市环保部门对该市市民进行了一次动物保护知识的网络问卷调查,每位市民仅有一次参加机会,通过随机抽样,得到参'与问卷调查的100人的得分(满分:100分)数据,统计结果如表所示:
组别 | ||||||
男 | 2 | 3 | 5 | 15 | 18 | 12 |
女 | 0 | 5 | 10 | 15 | 5 | 10 |
若规定问卷得分不低于70分的市民称为“动物保护关注者”,则山图中表格可得列联表如下:
非“动物保护关注者” | 是“动物保护关注者” | 合计 | |
男 | 10 | 45 | 55 |
女 | 15 | 30 | 45 |
合计 | 25 | 75 | 100 |
(1)请判断能否在犯错误的概率不超过0.05的前提下认为“动物保护关注者”与性别有关?
(2)若问卷得分不低于80分的人称为“动物保护达人”.现在从本次调查的“动物保护达人”中利用分层抽样的方法随机抽取6名市民参与环保知识问答,再从这6名市民中抽取2人参与座谈会,求抽取的2名市民中,既有男“动物保护达人”又有女“动物保护达人”的概率.
附表及公式:,其中.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |