题目内容
【题目】给出下列命题,其中正确命题有( )
A.空间任意三个不共面的向量都可以作为一个基底
B.已知向量,则与任何向量都不能构成空间的一个基底
C.是空间四点,若不能构成空间的一个基底,那么共面
D.已知向量组是空间的一个基底,若,则也是空间的一个基底
【答案】ABCD
【解析】
根据空间基底的概念,结合向量的共面定量,逐项判定,即可求解,得到答案.
选项中,根据空间基底的概念,可得任意三个不共面的向量都可以作为一个空间基底,所以正确;
选项中,根据空间基底的概念,可得正确;
选项中,由不能构成空间的一个基底,可得共面,
又由过相同点B,可得四点共面,所以正确;
选项中:由是空间的一个基底,则基向量与向量一定不共面,所以可以构成空间另一个基底,所以正确.
故选:ABCD.
【题目】某公司为了提高利润,从2012年至2018年每年对生产环节的改进进行投资,投资金额与年利润增长的数据如下表:
年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
投资金额(万元) | |||||||
年利润增长(万元) |
(1)请用最小二乘法求出关于的回归直线方程;如果2019年该公司计划对生产环节的改进的投资金额为万元,估计该公司在该年的年利润增长为多少?(结果保留两位小数)
(2)现从2012年—2018年这年中抽出三年进行调查,记年利润增长投资金额,设这三年中(万元)的年份数为,求随机变量的分布列与期望.
参考公式:.
参考数据:,.
【题目】某服装公司,为确定明年类服装的广告费用,对往年广告费(单位:千元)对年销售量(单位:件)和年利润(单位:千元)的影响.对2011-2018广告费和年销售量数据进行了处理,分析出以下散点图和统计量:
45 | 580 | 2025 | 297 | 1600 | 960 | 1440 |
表中
(1)由散点图可知,和更适合作为年销售量关于年广告费的回归方程类型?(给出判断即可,不必说明理由)
(2)根据(1)的判断结果和表中数据求关于的回归方程.
(3)已知该类服装年利率与的关系为.由(2)回答以下问题:年广告费用等于60时,年销售量及年利润的预报值为多少?年广告费用为何值时,年利率的预报值最小?
对于一组数据,其回归线的斜率和截距的最小二乘估计分别为:
【题目】某土特产超市为预估2020年元旦期间游客购买土特产的情况,对2019年元旦期间的90位游客购买情况进行统计,得到如下人数分布表.
购买金额(元) | ||||||
人数 | 10 | 15 | 20 | 15 | 20 | 10 |
(1)根据以上数据完成列联表,并判断是否有的把握认为购买金额是否少于60元与性别有关.
不少于60元 | 少于60元 | 合计 | |
男 | 40 | ||
女 | 18 | ||
合计 |
(2)为吸引游客,该超市推出一种优惠方案,购买金额不少于60元可抽奖3次,每次中奖概率为(每次抽奖互不影响,且的值等于人数分布表中购买金额不少于60元的频率),中奖1次减5元,中奖2次减10元,中奖3次减15元.若游客甲计划购买80元的土特产,请列出实际付款数(元)的分布列并求其数学期望.
附:参考公式和数据:,.
附表:
2.072 | 2.706 | 3.841 | 6.635 | 7.879 | |
0.150 | 0.100 | 0.050 | 0.010 | 0.005 |