题目内容

【题目】△ABC的内角A,B,C所对应的边分别为a,b,c.
(1)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);
(2)若a,b,c成等比数列,求cosB的最小值.

【答案】
(1)解:∵a,b,c成等差数列,

∴2b=a+c,

利用正弦定理化简得:2sinB=sinA+sinC,

∵sinB=sin[π﹣(A+C)]=sin(A+C),

∴sinA+sinC=2sinB=2sin(A+C);


(2)解:∵a,b,c成等比数列,

∴b2=ac,

∴cosB= = =

当且仅当a=c时等号成立,

∴cosB的最小值为


【解析】(1)由a,b,c成等差数列,利用等差数列的性质列出关系式,利用正弦定理化简,再利用诱导公式变形即可得证;(2)由a,bc成等比数列,利用等比数列的性质列出关系式,再利用余弦定理表示出cosB,将得出的关系式代入,并利用基本不等式变形即可确定出cosB的最小值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网