题目内容

【题目】已知 =(2,1), =(1,7), =(5,1),设R是直线OP上的一点,其中O是坐标原点.
(1)求使 取得最小值时 的坐标的坐标;
(2)对于(1)中的点R,求 夹角的余弦值.

【答案】
(1)解:由题意,设 =t =(2t,t),

= =(1﹣2t,7﹣t),

= =(5﹣2t,1﹣t).

所以 =(1﹣2t)(5﹣2t)+(7﹣t)(1﹣t)=5t2﹣20t+12=5(t﹣2)2﹣8,

所以当t=2时, 最小,即 =(4,2).


(2)解:设向量 的夹角为θ,由(1)得 =(﹣3,5), =(1,﹣1),

所以cosθ= = =﹣


【解析】(1)利用坐标法求出 的坐标,结合向量数量积的定义转化为一元二次函数,利用一元二次函数的性质进行求解.(2)根据向量数量积的应用进行求解即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网