搜索
题目内容
若
在R上可导,
,则
( )
A.
B.
C.
D.
试题答案
相关练习册答案
A
试题分析:∵f(x)=x
2
+2
x+3,两边求导可得:
,令x=2可得
,
∴f(x)=x
2
-8x+3,∴
.
练习册系列答案
考必胜全国小学毕业升学考试试卷精选系列答案
书立方期末大考卷系列答案
中招试题详解暨中招复习指导系列答案
小学升学多轮夯基总复习系列答案
金钥匙期末冲刺100分系列答案
名师指导期末冲刺卷系列答案
初中英语听力训练苏州大学出版社系列答案
教与学中考必备系列答案
培优好卷系列答案
期末在线系列答案
相关题目
已知函数
处取得极小值-4,使其导函数
的取值范围为(1,3)。
(1)求
的解析式及
的极大值;
(2)当
的最大值。
已知常数
,函数
.
(1)讨论
在区间
上的单调性;
(2)若
存在两个极值点
,且
,求
的取值范围.
设函数f(x)=ax-
,曲线y=f(x)在点(2,f(2))处的切线方程为7x-4y-12=0.
(1)求f(x)的解析式;
(2)证明:曲线y=f(x)上任一点处的切线与直线x=0和直线y=x所围成的三角形面积为定值,并求此定值.
设函数
.
(1)当
时,求函数
在区间
内的最大值;
(2)当
时,方程
有唯一实数解,求正数
的值.
已知
在
处取最大值。以下各式正确的序号为
.
①
②
③
④
⑤
定义在区间
上的连续函数
的导函数为
,如果
使得
,则称
为区间
上的“中值点”.下列函数:①
;②
;③
;④
在区间
上“中值点”多于一个的函数序号为
.
设f(x)是定义在区间(1,+∞)上的函数,其导函数为f′(x).如果存在实数a和函数h(x),其中h(x)对任意的x∈(1,+∞)都有h(x)>0,使得f′(x)=h(x)(x
2
-ax+1),则称函数f(x)具有性质P(a).
(1)设函数f(x)=ln x+
(x>1),其中b为实数.
①求证:函数f(x)具有性质P(b);
②求函数f(x)的单调区间;
(2)已知函数g(x)具有性质P(2).给定x
1
,x
2
∈(1,+∞),x
1
<x
2
,设m为实数,α=mx
1
+(1-m)x
2
,β=(1-m)x
1
+mx
2
,且α>1,β>1,若|g(α)-g(β)|<|g(x
1
)-g(x
2
)|,求m的取值范围.
设
,若
,则
( )
A.
B.
C.
D.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总