题目内容

设函数f(x)=ax-,曲线y=f(x)在点(2,f(2))处的切线方程为7x-4y-12=0.
(1)求f(x)的解析式;
(2)证明:曲线y=f(x)上任一点处的切线与直线x=0和直线y=x所围成的三角形面积为定值,并求此定值.
(1)f(x)=x-
(2)见解析
解:(1)方程7x-4y-12=0可化为y=x-3,
当x=2时,y=
又f′(x)=a+
于是,解得
故f(x)=x-
(2)证明:设P(x0,y0)为曲线上任一点,由f′(x)=1+知,曲线在点P(x0,y0)处的切线方程为y-y0=(1+)·(x-x0),即y-(x0)=(1+)(x-x0).
令x=0得,y=-,从而得切线与直线x=0,交点坐标为(0,-).
令y=x,得y=x=2x0,从而得切线与直线y=x的交点坐标为(2x0,2x0).
所以点P(x0,y0)处的切线与直线x=0,y=x所围成的三角形面积为|-||2x0|=6.
曲线y=f(x)上任一点处的切线与直线x=0和直线y=x所围成的三角形面积为定值,此定值为6.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网