搜索
题目内容
定义在区间
上的连续函数
的导函数为
,如果
使得
,则称
为区间
上的“中值点”.下列函数:①
;②
;③
;④
在区间
上“中值点”多于一个的函数序号为
.
试题答案
相关练习册答案
①④
试题分析:根据“中值点”的定义,设
为区间
上的中值点,则
,①中
,因为
,此时区间
的任一实数都为“中值点”;对于②,
即
;对于③
即
;对于④
即
;综上可知,选①④.
练习册系列答案
百校联盟金考卷系列答案
步步高学案导学与随堂笔记系列答案
诚成教育学业评价系列答案
创新课时精练系列答案
创新设计课堂讲义系列答案
创新优化新天地试卷系列答案
高中得分王系列答案
激活思维智能优选卷系列答案
金榜名卷复习冲刺卷系列答案
金东方文化五练一测系列答案
相关题目
已知函数
,
,
为自然对数的底数.
(I)求函数
的极值;
(2)若方程
有两个不同的实数根,试求实数
的取值范围;
已知函数
.
(1)求
的单调区间;
(2)记
为
的从小到大的第
个零点,证明:对一切
,有
.
已知函数
.
(1)当
时,求
的单调区间;
(2)当
时,若存在
, 使得
成立,求实数
的取值范围.
函数
的导函数原点处的部分图象大致为 ( )
若
在R上可导,
,则
( )
A.
B.
C.
D.
已知y=f(x)是奇函数,当x∈(0,2)时,f(x)=ln x-ax
,当x∈(-2,0)时,f(x)的最小值为1,则a的值等于________.
已知函数f(x)=x
2
-(1+2a)x+aln x(a为常数).
(1)当a=-1时,求曲线y=f(x)在x=1处切线的方程;
(2)当a>0时,讨论函数y=f(x)在区间(0,1)上的单调性,并写出相应的单调区间.
已知函数
.
(1)若当
时,函数
的最大值为
,求
的值;
(2)设
(
为函数
的导函数),若函数
在
上是单调函数,求
的取值范围.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总