题目内容
【题目】如图,已知六个直角边均为1和的直角三角形围成的两个正六边形,则该图形绕着旋转一周得到的几何体的体积为( )
A.B.C.D.
【答案】B
【解析】
根据图形,外面的六边形的边长为,旋转得到的几何体是两个同底的圆台,再根据圆台的体积公式求解,内部的六边形边长为1,旋转得到的几何体是一个圆柱,两个与圆柱同底的圆锥.再根据圆柱,圆锥的体积公式求解,然后外部的减内部的体积即为所求.
根据题意,外面的六边形边长为,
旋转得到的几何体是两个同底的圆台,
上底半径为,下底半径为,高为 ,
所以旋转得到的几何体的体积为,内部的六边形边长为1
旋转得到的几何体是一个圆柱,两个与圆柱同底的圆锥,
圆锥的底面半径为,高为,圆柱的底面半径为,高为1,
内部的六边形旋转得到的几何体的体积为,
所以几何体的体积为.
故选:B
练习册系列答案
相关题目
【题目】某芯片公司为制定下一年的研发投入计划,需了解年研发资金投入量(单位:亿元)对年销售额(单位:亿元)的影响.该公司对历史数据进行对比分析,建立了两个函数模型:①,②,其中均为常数,为自然对数的底数.
现该公司收集了近12年的年研发资金投入量和年销售额的数据,,并对这些数据作了初步处理,得到了右侧的散点图及一些统计量的值.令,经计算得如下数据:
(1)设和的相关系数为,和的相关系数为,请从相关系数的角度,选择一个拟合程度更好的模型;
(2)(i)根据(1的选择及表中数据,建立关于的回归方程(系数精确到0.01);
(ii)若下一年销售额需达到90亿元,预测下一年的研发资金投入量是多少亿元?
附:①相关系数,回归直线中斜率和截距的最小二乘估计公式分别为:,;
② 参考数据:,,.