题目内容
【题目】如图,在以为顶点,母线长为的圆锥中,底面圆的直径长为2,是圆所在平面内一点,且是圆的切线,连接交圆于点,连接,.
(1)求证:平面平面;
(2)若是的中点,连接,,当二面角的大小为时,求平面与平面所成锐二面角的余弦值.
【答案】(1)详见解析;(2).
【解析】
(1)由是圆的直径,与圆切于点,可得,
由底面圆,可得,利用线面垂直的判定定理可知,平面,即可推出.又在中,,可推出,利用线面垂直的判定定理可证平面,从而利用面面垂直的判定定理可证出平面平面.
(2)由,,可知为二面角的平面角,
即,建立空间直角坐标系,易知,
求得点的坐标如下;,,
,,,
由(1)知为平面的一个法向量,
设平面的法向量为,
,,
通过,,∴,,
可求出平面的一个法向量为,
∴.
∴ 平面与平面所成锐二面角的余弦值为.
解:(1)是圆的直径,与圆切于点,
底面圆,∴
,平面,∴.
又∵在中,,∴
∵,∴平面,从而平面平面.
(2)∵ ,,∴为二面角的平面角,
∴ ,
如图建立空间直角坐标系,易知,
则,,
,,,
由(1)知为平面的一个法向量,
设平面的法向量为,
,,
∵ ,,∴,,
∴ ,即
故平面的一个法向量为,
∴.
∴ 平面与平面所成锐二面角的余弦值为.
【题目】为了研究高中学生对乡村音乐的态度(喜欢和不喜欢两种态度)与性别的关系,运用2×2列联表进行独立性检验,经计算K2=8.01,附表如下:
P(K2≥k0) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
参照附表,得到的正确的结论是( )
A. 有99%以上的把握认为“喜欢乡村音乐与性别有关”
B. 有99%以上的把握认为“喜欢乡村音乐与性别无关”
C. 在犯错误的概率不超过0.1%的前提下,认为“喜欢乡村音乐与性别有关”
D. 在犯错误的概率不超过0.1%的前提下,认为“喜欢乡村音乐与性别无关”