题目内容
【题目】如图,已知六个直角边均为1和的直角三角形围成的两个正六边形,则该图形绕着旋转一周得到的几何体的体积为( )
A.B.C.D.
【答案】B
【解析】
根据图形,外面的六边形的边长为,旋转得到的几何体是两个同底的圆台,再根据圆台的体积公式求解,内部的六边形边长为1,旋转得到的几何体是一个圆柱,两个与圆柱同底的圆锥.再根据圆柱,圆锥的体积公式求解,然后外部的减内部的体积即为所求.
根据题意,外面的六边形边长为,
旋转得到的几何体是两个同底的圆台,
上底半径为,下底半径为,高为 ,
所以旋转得到的几何体的体积为,内部的六边形边长为1
旋转得到的几何体是一个圆柱,两个与圆柱同底的圆锥,
圆锥的底面半径为,高为,圆柱的底面半径为,高为1,
内部的六边形旋转得到的几何体的体积为,
所以几何体的体积为.
故选:B
练习册系列答案
相关题目
【题目】某中学为了解高二年级中华传统文化经典阅读的整体情况,从高二年级随机抽取10名学生进行了两轮测试,并把两轮测试成绩的平均分作为该名学生的考核成绩.记录的数据如下:
1号 | 2号 | 3号 | 4号 | 5号 | 6号 | 7号 | 8号 | 9号 | 10号 | |
第一轮测试成绩 | 96 | 89 | 88 | 88 | 92 | 90 | 87 | 90 | 92 | 90 |
第二轮测试成绩 | 90 | 90 | 90 | 88 | 88 | 87 | 96 | 92 | 89 | 92 |
(Ⅰ)从该校高二年级随机选取一名学生,试估计这名学生考核成绩大于90 分的概率;
(Ⅱ)从考核成绩大于90分的学生中再随机抽取两名同学,求这两名同学两轮测试成绩均大于等于90分的概率;
(Ⅲ)记抽取的10名学生第一轮测试的平均数和方差分别为,,考核成绩的平均数和方差分别为,,试比较与, 与的大小.(只需写出结论)