ÌâÄ¿ÄÚÈÝ
13£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪe=$\frac{1}{2}$£¬ÇÒ¹ýµã£¨$\frac{1}{3}$£¬$\frac{\sqrt{13}}{2}$£©£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÒÑÖªA¡¢BÊÇÍÖÔ²ÉϵÄÁ½µã£¬µãMµÄ×ø±êΪ£¨1£¬0£©£¬µ±A¡¢BÁ½µã²»¹ØÓÚxÖá¶Ô³Æʱ£¬ÊÔ̽Çó¡÷MABÄÜ·ñΪµÈ±ßÈý½ÇÐΣ¬²¢ËµÃ÷ÀíÓÉ£®
·ÖÎö £¨1£©ÓÉÍÖÔ²CµÄÀëÐÄÂÊΪe=$\frac{1}{2}$£¬ÇÒ¹ýµã£¨$\frac{1}{3}$£¬$\frac{\sqrt{13}}{2}$£©£¬¿ÉµÃ$\left\{\begin{array}{l}{\frac{c}{a}=\frac{1}{2}}\\{{a}^{2}={b}^{2}+{c}^{2}}\\{\frac{1}{9{a}^{2}}+\frac{13}{4{b}^{2}}=1}\end{array}\right.$£¬½âµÃ¼´¿É£»
£¨2£©£©£¨i£©µ±AB¡ÎxÖáʱ£¬ÓëÍÖÔ²·½³ÌÁªÁ¢¿ÉµÃÁ½¸ö¡÷MABΪµÈ±ßÈý½ÇÐΣ»
£¨ii£©µ±ABÓëxÖ᲻ƽÐÐÒ²²»´¹Ö±Ê±£¬ÉèÖ±ÏßABµÄ·½³ÌΪy=kx+m£¬ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ï߶ÎABµÄÖеãN£¨x0£¬y0£©£¬Ö±Ïß·½³ÌÓëÍÖÔ²·½³ÌÁªÁ¢¿ÉµÃ£º£¨9+12k2£©x2+24kmx+12m2-40=0£¬ÓÉ¡÷£¾0£¬µÃµ½9m2£¼30+40k2£®ÀûÓøùÓëϵÊýµÄ¹Øϵ¿ÉµÃ£ºN$£¨\frac{-12km}{9+12{k}^{2}}£¬\frac{9m}{9+12{k}^{2}}£©$£®ÓÖM£¨0£¬1£©£¬Èô¡÷MABΪµÈ±ßÈý½ÇÐΣ¬ÔòkMN•k=-1£¬»¯Îªm=-3-4k2£®´úÈë¡÷£¾0£¬»¯Îª144k4+176k2+51£¼0£¬¿´´Ë·½³ÌÊÇ·ñÓн⼴¿É£®
½â´ð ½â£º£¨1£©¡ßÍÖÔ²CµÄÀëÐÄÂÊΪe=$\frac{1}{2}$£¬ÇÒ¹ýµã£¨$\frac{1}{3}$£¬$\frac{\sqrt{13}}{2}$£©£¬
¡à$\left\{\begin{array}{l}{\frac{c}{a}=\frac{1}{2}}\\{{a}^{2}={b}^{2}+{c}^{2}}\\{\frac{1}{9{a}^{2}}+\frac{13}{4{b}^{2}}=1}\end{array}\right.$£¬½âµÃb2=$\frac{10}{3}$£¬a2=$\frac{40}{9}$£®
¡àÍÖÔ²CµÄ·½³ÌΪ£º$\frac{9{x}^{2}}{40}+\frac{3{y}^{2}}{10}=1$£®
£¨2£©£¨i£©µ±AB¡ÎxÖáʱ£¬Ö±ÏßAMµÄбÂÊΪ$\sqrt{3}$£¬·½³ÌΪy=$\sqrt{3}$x+1£¬ÓëÍÖÔ²·½³ÌÁªÁ¢¿ÉµÃÁ½¸ö¡÷MABΪµÈ±ßÈý½ÇÐΣ»
£¨ii£©µ±ABÓëxÖ᲻ƽÐÐÒ²²»´¹Ö±Ê±£¬ÉèÖ±ÏßABµÄ·½³ÌΪy=kx+m£¬
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ï߶ÎABµÄÖеãN£¨x0£¬y0£©£¬
ÁªÁ¢$\left\{\begin{array}{l}{\frac{9{x}^{2}}{40}+\frac{3{y}^{2}}{10}=1}\\{y=kx+m}\end{array}\right.$£¬ÏûÈ¥y¿ÉµÃ£º£¨9+12k2£©x2+24kmx+12m2-40=0£¬ÓÉ¡÷£¾0£¬µÃµ½9m2£¼30+40k2£®
¡àx1+x2=$\frac{-24km}{9+12{k}^{2}}$£¬y1+y2=k£¨x1+x2£©+2m=$\frac{18m}{9+12{k}^{2}}$£¬
½âµÃN$£¨\frac{-12km}{9+12{k}^{2}}£¬\frac{9m}{9+12{k}^{2}}£©$£®ÓÖM£¨0£¬1£©£¬
Èô¡÷MABΪµÈ±ßÈý½ÇÐΣ¬ÔòkMN•k=-1£¬
¡à$\frac{\frac{9m}{9+12{k}^{2}}-1}{\frac{-12km}{9+12{k}^{2}}-0}$¡Ák=-1£¬»¯Îªm=-3-4k2£®
´úÈë¡÷£¾0£¬»¯Îª144k4+176k2+51£¼0£¬
µ«ÊÇ${k}_{1}^{2}+{k}_{2}^{2}$=-$\frac{176}{144}$£¬Òò´ËÎ޽⣮
×ÛÉϿɵãºÖ»Óе±AB¡ÎxÖáʱ£¬ÓëÍÖÔ²·½³ÌÁªÁ¢¿ÉµÃÁ½¸ö¡÷MABΪµÈ±ßÈý½ÇÐΣ®
µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²ÏཻÎÊÌâת»¯Îª·½³ÌÁªÁ¢¿ÉµÃ¡÷£¾0¼°Æä¸ùÓëϵÊýµÄ¹Øϵ¡¢µÈ±ßÈý½ÇÐεÄÐÔÖÊ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
A£® | $\frac{29}{2}$ | B£® | $\frac{21}{2}$ | C£® | -$\frac{11}{2}$ | D£® | $\frac{11}{2}$ |
A£® | y=x-1 | B£® | y=ln£¨x+1£© | C£® | y=£¨$\frac{1}{2}$£©x | D£® | y=x+$\frac{1}{x}$ |
A£® | 21 | B£® | 19 | C£® | 31 | D£® | 29 |