题目内容
【题目】已知椭圆的离心率为,其上焦点到直线的距离为.
(1)求椭圆的方程;
(2)过点的直线交椭圆于,两点.试探究以线段为直径的圆是否过定点?若过,求出定点坐标,若不过,请说明理由.
【答案】(1)(2)详见解析
【解析】
(1)由椭圆离心率结合得到a,b,c之间的关系,计算焦点到直线的距离得到a,b的值,从而得到椭圆方程;(2)当直线l斜率不存在时,得到为直径的圆的方程,当直线l斜率为0时,得到为直径的圆的方程,从而得到两圆的交点Q,然后只需证明当直线的斜率存在且不为0时为直径的圆恒过点Q即可.
解:(1) 由题意,,,所以,.
又,,所以,,故椭圆的方程为
(2)当轴时,以为直径的圆的方程为
当轴时,以为直径的圆的方程为.
可得两圆交点为.
由此可知,若以为直径的圆恒过定点,则该定点必为.
下证符合题意.
设直线的斜率存在,且不为0,则方程为,代入
并整理得, 设,,
则, ,
所以
故,即在以为直径的圆上.
综上,以为直径的圆恒过定点.
练习册系列答案
相关题目
【题目】根据教育部最新消息,2020年高考数学将是最后一年实行文理分科,由于课程大纲与命题方向出现了变动,试题难度也可能会做出相应调整.为了评估学生在2020年高考复习情况,某中学组织本校540名考生参加市模拟考试,现采用分层抽样的方法从文、理科考生中分别抽取60和30份数学试卷进行成绩分析,得到下面的成绩频数分布表:
分数分组 | |||||
文科频数 | 12 | 4 | 10 | 11 | 23 |
理科频数 | 3 | 7 | 2 | 10 | 8 |
由此可估计文科考生的不及格人数(90分为及格分数线)大约为( )
A.128B.156C.204D.132