题目内容
【题目】设椭圆的左焦点为,右顶点为,离心率为.已知是抛物线的焦点, 到抛物线的准线的距离为.
(I)求椭圆的方程和抛物线的方程;
(II)设上两点, 关于轴对称,直线与椭圆相交于点(异于点),直线与轴相交于点.若的面积为,求直线的方程.
【答案】(Ⅰ), .(Ⅱ),或.
【解析】试题分析:由于为抛物线焦点, 到抛物线的准线的距离为,则,又椭圆的离心率为,求出,得出椭圆的标准方程和抛物线方程;则,设直线方程为设,解出两点的坐标,把直线方程和椭圆方程联立解出点坐标,写出 所在直线方程,求出点的坐标,最后根据的面积为解方程求出,得出直线的方程.
试题解析:(Ⅰ)解:设的坐标为.依题意, , , ,解得, , ,于是.
所以,椭圆的方程为,抛物线的方程为.
(Ⅱ)解:设直线的方程为,与直线的方程联立,可得点,故.将与联立,消去,整理得,解得,或.由点异于点,可得点.由,可学*科.网得直线的方程为,令,解得,故.所以.又因为的面积为,故,整理得,解得,所以.
所以,直线的方程为,或.
练习册系列答案
相关题目