题目内容
已知圆与圆,在下列说法中:
①对于任意的,圆与圆始终相切;
②对于任意的,圆与圆始终有四条公切线;
③当时,圆被直线截得的弦长为;
④分别为圆与圆上的动点,则的最大值为4.
其中正确命题的序号为______.
①对于任意的,圆与圆始终相切;
②对于任意的,圆与圆始终有四条公切线;
③当时,圆被直线截得的弦长为;
④分别为圆与圆上的动点,则的最大值为4.
其中正确命题的序号为______.
①③④
对于①,我们知道两个圆相切等价于两个圆的圆心距刚好等于两个圆的半径之和,有题意,有:圆的半径为:1,圆心为:;圆的半径为:1,圆心为:,所以两个圆的圆心距为:,又因为,两圆的半径之和为:1+1=2=圆心距,所以对于任意,圆和圆始终相切。
对于②,从①有,两圆相切,所以两圆只有三条公切线,所以②错误。
对于③,我们有圆的方程为:,故有圆的圆心为:,设其被所截弦为,过圆心做垂直于,则由圆的性质,有是弦的中点,所以圆心到直线的距离为:,又因为圆的半径为1,所以有其所截弦的长为:所以③正确。
对于④,由①有,两圆相切,所以两圆上的点的最大距离就是两圆的直径之和,因为的直径为2,的直径也为2,也就是说的最大值为:2+2=4.
对于②,从①有,两圆相切,所以两圆只有三条公切线,所以②错误。
对于③,我们有圆的方程为:,故有圆的圆心为:,设其被所截弦为,过圆心做垂直于,则由圆的性质,有是弦的中点,所以圆心到直线的距离为:,又因为圆的半径为1,所以有其所截弦的长为:所以③正确。
对于④,由①有,两圆相切,所以两圆上的点的最大距离就是两圆的直径之和,因为的直径为2,的直径也为2,也就是说的最大值为:2+2=4.
练习册系列答案
相关题目