题目内容
(本小题满分12分)
为实数,函数![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230322948917.png)
(1)求
的单调区间
(2)求证:当
且
时,有![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230323198732.png)
(3)若
在区间
恰有一个零点,求实数
的取值范围.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230322870278.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230322948917.png)
(1)求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230322964463.png)
(2)求证:当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230323151538.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230323167393.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230323198732.png)
(3)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230322964463.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230323245527.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230322870278.png)
(1)
的递减区间为
;递增区间为
.
(2)
;
(3)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230322964463.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230323323605.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230323338624.png)
(2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232303233541054.png)
(3)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232303233851845.png)
本试题主要是考查了函数的单调性和函数的极值,以及函数的零点的综合运用
(1)因为令
得
.
当
时,
当
时,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230323525575.png)
可知单调增减区间。
(2)设![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230323541848.png)
则![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230323572912.png)
由(1)知:![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232303235881053.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230323619751.png)
,即
在
上递增
从而得到不等式的证明。
(3)由(1)可得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230323697693.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230323713961.png)
得到参数a的范围。
解:(1) 令
得
.
当
时,
当
时,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230323525575.png)
∴
的递减区间为
;递增区间为
.………………….(4分)
(2)设![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230323541848.png)
则![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230323572912.png)
由(1)知:![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232303235881053.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230323619751.png)
,即
在
上递增
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230324087896.png)
即
…………………. ………………….(8分)
(3)由(1)可得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230323697693.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230323713961.png)
即
,或![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232303241961058.png)
…………….(12分)
(1)因为令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230323401715.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230323432456.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230323463697.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230323479572.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230323510715.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230323525575.png)
可知单调增减区间。
(2)设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230323541848.png)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230323572912.png)
由(1)知:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232303235881053.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230323619751.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230323635592.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230323650472.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230323245527.png)
从而得到不等式的证明。
(3)由(1)可得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230323697693.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230323713961.png)
得到参数a的范围。
解:(1) 令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230323401715.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230323432456.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230323463697.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230323479572.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230323510715.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230323525575.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230322964463.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230323323605.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230323338624.png)
(2)设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230323541848.png)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230323572912.png)
由(1)知:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232303235881053.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230323619751.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230323635592.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230323650472.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230323245527.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230324087896.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232303233541054.png)
(3)由(1)可得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230323697693.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230323713961.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230324165719.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232303241961058.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232303233851845.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目