题目内容
【题目】已知椭圆:的右焦点为,过点的直线(不与轴重合)与椭圆相交于,两点,直线:与轴相交于点,过点作,垂足为D.
(1)求四边形(为坐标原点)面积的取值范围;
(2)证明直线过定点,并求出点的坐标.
【答案】(1);(2)证明见解析,
【解析】
(1)由题意设直线AB的方程,代入椭圆整理得纵坐标之和与之积,将四边形的面积分成2个三角形,根据底相同,列出关于面积的函数式,再结合均值不等式可得面积的取值范围;
(2)由(1)得B,D的坐标,设直线BD 的方程,令纵坐标为零得横坐标是定值,即直线BD过定点.
(1)由题F(1,0),设直线AB:,
联立,消去x,得,
因为,,
则
所以四边形OAHB的面积,
令
因为(当且仅当t=1即m=0时取等号),所以,
所以四边形OAHB的面积取值范围为;
(2),所以直线BD的斜率,所以直线BD的方程为,
令y=0,可得①
由(1)可得
化简①可得
则直线BD过定点.
练习册系列答案
相关题目