题目内容

已知A,B,C是平面上不共线的三点,o为平面ABC内任一点,动点P满足等式且λ≠1,则P的轨迹一定通过△ABC的( )
A.内心
B.垂心
C.重心
D.外心
【答案】分析:根据向量的加法的平行四边形法则向量的运算法则,取AB的中点D,对,进行化简,得到=,根据三点共线的充要条件知道P、C、D三点共线,从而得到点P的轨迹一定经过△ABC的重心.
解答:解:取AB的中点D,则 2=

=[(1-λ)(2)+(1+2λ) ]
=

∴P、C、D三点共线,
∴点P的轨迹一定经过△ABC的重心.
故选C.
点评:本小题主要考查向量在几何中的应用、三点共线的充要条件的应用、三角形五心等基础知识,考查运算求解能力,考查数形结合思与转化思想.属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网