题目内容
【题目】“珠算之父”程大为是我国明代伟大数学家,他的应用数学巨著《算法统综》的问世,标志着我国的算法由筹算到珠算转变的完成,程大位在《算法统综》中常以诗歌的形式呈现数学问题,其中有一首“竹筒容米”问题:“家有九节竹一茎,为因盛米不均平,下头三节三升九,上稍四节储三升,唯有中间两节竹,要将米数次第盛,若有先生能算法,也教算得到天明”((注)三升九:升,次第盛;盛米容积依次相差同一数量.)用你所学的数学知识求得中间两节的容积为( )
A.升B.升C.升D.升
【答案】B
【解析】
设相差的同一数量为升,下端第一节盛米升,根据题意得出关于、的方程组,解出这两个量的值,即可计算出中间两节盛米的容积升.
要按依次盛米容积相差同一数量的方式盛米,
设相差的同一数量为升,下端第一节盛米升,
由题意得,解得,
所以,中间两节盛米的容积为(升),
故选:B.
练习册系列答案
相关题目