题目内容
设数列{an}的各项都为正数,其前n项和为Sn,已知对任意n∈N*,Sn是a和an的等差中项.
(1)证明数列{an}为等差数列,并求数列{an}的通项公式;
(2)证明
<2.
(1)证明数列{an}为等差数列,并求数列{an}的通项公式;
(2)证明
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040435486749.png)
(1)an=n.(2)见解析
(1)由已知得,2Sn=
+an,且an>0,
当n=1时,2a1=
+a1,解得a1=1(a1=0舍去);
当n≥2时,有2Sn-1=
+an-1.
于是2Sn-2Sn-1=
-
+an-an-1,
即2an=
-
+an-an-1.
于是
-
=an+an-1,即(an+an-1)(an-an-1)=an+an-1.
因为an+an-1>0,所以an-an-1=1(n≥2).
故数列{an}是首项为1,公差为1的等差数列,
所以数列{an}的通项公式为an=n.
(2)证明:因为an=n,则Sn=
,
,
所以
=2
=2
<2.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040435502396.png)
当n=1时,2a1=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040435518370.png)
当n≥2时,有2Sn-1=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040435518445.png)
于是2Sn-2Sn-1=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040435502396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040435518445.png)
即2an=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040435502396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040435518445.png)
于是
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040435502396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040435518445.png)
因为an+an-1>0,所以an-an-1=1(n≥2).
故数列{an}是首项为1,公差为1的等差数列,
所以数列{an}的通项公式为an=n.
(2)证明:因为an=n,则Sn=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040435627617.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240404356421269.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040435486749.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240404356741536.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040435689724.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目