题目内容

精英家教网如图,正四棱锥P-ABCD底面的四个顶点A、B、C、D在球O的同一个大圆上,点P在球面上,如果VP-ABCD=
16
3
,则求O的表面积为(  )
A、4πB、8π
C、12πD、16π
分析:由题意可知,PO⊥平面ABCD,并且是半径,由体积求出半径,然后求出球的表面积.
解答:精英家教网解:如图,正四棱锥P-ABCD底面的四个顶点A,B,C,D在球O的同一个大圆上,点P在球面上,PO⊥底面ABCD,PO=R,SABCD=2R2VP-ABCD=
16
3

所以
1
3
•2R2•R=
16
3
,R=2,
球O的表面积是16π,
故选D.
点评:本题考查球的内接体问题,球的表面积、体积,考查学生空间想象能力,是基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网