题目内容
【题目】已知椭圆的右焦点到直线的距离为,在椭圆上.
(1)求椭圆的方程;
(2)若过作两条互相垂直的直线,是与椭圆的两个交点,是与椭圆的两个交点,分别是线段的中点试,判断直线是否过定点?若过定点求出该定点的坐标;若不过定点,请说明理由.
【答案】(1);(2)直线过定点
【解析】
(1)由题意得,求出,即可求出椭圆方程;
(2)设直线的方程为,①当时,联立方程组,化简可得
,进而求出,同理可得,进而求出,求出直线的方程,求出必过的定点;②当时,易知直线过定点;综上即可求出结果.
解:(1)由题意得,∴,
∴椭圆的方程为;
(2)由(1)得,设直线的方程为,点的坐标分别为,
①当时,由,得,
∴,∴
同理,由,可得
∴直线的方程为,过定点;
②当时,则直线的方程为,
∴直线过定点
综上,直线过定点
【题目】“读书可以让人保持思想活跃,让人得到智慧启发,让人滋养浩然之气”,2018年第一期中国青年阅读指数数据显示,从供给的角度,文学阅读域是最多的,远远超过了其他阅读域的供给量.某校采用分层抽样的方法从1000名文科生和2000名理科生中抽取300名学生进行了在暑假阅读内容和阅读时间方面的调查,得到数据如表:
文学阅读人数 | 非文学阅读人数 | 调查人数 | |
理科生 | 130 | ||
文科生 | 45 | ||
合计 |
(1)先完成上面的表格,并判断能否有90%的把握认为学生所学文理与阅读内容有关?
(2从300名被调查的学生中,随机进取30名学生,整理其日平均阅读时间(单位:分钟)如表:
阅读时间 | |||||
男生人数 | 2 | 4 | 3 | 5 | 2 |
女生人数 | 1 | 3 | 4 | 3 | 3 |
试估计这30名学生日阅读时间的平均值(同一组中的数据以这组数据所在区间中点的值作代表)
(3)从(2)中日均阅读时间不低于120分钟的学生中随机选取2人介绍阅读心得,求这两人都是女生的概率.
参考公式: ,其中.
参考数据:
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【题目】我们知道,地球上的水资源有限,爱护地球、节约用水是我们每个人的义务与责任.某市政府为了对自来水的使用进行科学管理,节约水资源,计划确定一个家庭年用水量的标准.为此,对全市家庭日常用水量的情况进行抽样抽查,获得了个家庭某年的用水量(单位:立方米),统计结果如下表及图所示.
分组 | 频数 | 频率 |
25 | ||
0.19 | ||
50 | ||
0.23 | ||
0.18 | ||
5 |
(1)分别求出,的值;
(2)若以各组区间中点值代表该组的取值,试估计全市家庭年均用水量;
(3)从样本中年用水量在(单位:立方米)的5个家庭中任选3个,作进一步的跟踪研究,求年用水量最多的家庭被选中的概率(5个家庭的年用水量都不相等).