题目内容

【题目】已知随机变量ξi满足P(ξi=1)=pi , P(ξi=0)=1﹣pi , i=1,2.若0<p1<p2 ,则( )
A.E(ξ1)<E(ξ2),D(ξ1)<D(ξ2
B.E(ξ1)<E(ξ2),D(ξ1)>D(ξ2
C.E(ξ1)>E(ξ2),D(ξ1)<D(ξ2
D.E(ξ1)>E(ξ2),D(ξ1)>D(ξ2

【答案】A
【解析】解:∵随机变量ξi满足P(ξi=1)=pi , P(ξi=0)=1﹣pi , i=1,2,…,
0<p1<p2
<1﹣p2<1﹣p1<1,
E(ξ1)=1×p1+0×(1﹣p1)=p1
E(ξ2)=1×p2+0×(1﹣p2)=p2
D(ξ1)=(1﹣p12p1+(0﹣p12(1﹣p1)=
D(ξ2)=(1﹣p22p2+(0﹣p22(1﹣p2)=
D(ξ1)﹣D(ξ2)=p1﹣p12﹣( )=(p2﹣p1)(p1+p2﹣1)<0,
∴E(ξ1)<E(ξ2),D(ξ1)<D(ξ2).
故选:A.
【考点精析】根据题目的已知条件,利用离散型随机变量及其分布列的相关知识可以得到问题的答案,需要掌握在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网