题目内容
【题目】如图,四棱锥的底面为直角梯形,,,,底面,且,为的中点.
(1)证明:;
(2)设点是线段上的动点,当直线与直线所成的角最小时,求三棱锥的体积.
【答案】(1)见解析;(2).
【解析】
(1)要证明,只需证明平面即可;
(2)以C为原点,分别以的方向为轴、轴、轴的正方向,建立空间直角坐标系,利用向量法求,并求其最大值从而确定出使问题得到解决.
(1)连结AC、AE,由已知,四边形ABCE为正方形,则①,因为底面
,则②,由①②知平面,所以.
(2)以C为原点,建立如图所示的空间直角坐标系,
则,,,
,所以,,,设,
,则,所以
,设,则
,所以当,即时,取最大值,
从而取最小值,即直线与直线所成的角最小,此时,
则,因为,,则平面,从而M到平面的
距离,所以.
练习册系列答案
相关题目