题目内容
某高校共有15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时)
(1)应收集多少位女生样本数据?
(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据分组区间为:.估计该校学生每周平均体育运动时间超过4个小时的概率.
(3)在样本数据中,有60位女生的每周平均体育运动时间超过4个小时.请完成每周平均体育运动时间与性别的列联表,并判断是否有的把握认为“该校学生的每周平均体育运动时间与性别有关”.
附:
![]() | 0.10 | 0.05 | 0.010 | 0.005 |
![]() | 2.706 | 3.841 | 6.635 | 7.879 |
(1)90;(2)0.75;(3)有的把握认为“该校学生的每周平均体育运动时间与性别有关”.
解析试题分析:(1)利用分层抽样的应用可以算出,记应收集90位女生的样本数据.(2)根据频率分布直方图可得
.(3)根据题意300位学生中有
人的每周平均体育运动时间超过4小时,75人的每周平均体育运动时间不超过4小时.又因为样本数据中有210份是关于男生的,90份是关于女生的.可以画出每周平均体育运动时间与性别列联表,计算
.则有
的把握认为“该校学生的每周平均体育运动时间与性别有关”.
(1),所以应收集90位女生的样本数据.
由频率分布直方图得,该校学生每周平均体育运动时间超过4个小时的概率为
.
由(2)知,300位学生中有人的每周平均体育运动时间超过4小时,75人的每周平均体育运动时间不超过4小时.又因为样本数据中有210份是关于男生的,90份是关于女生的.所以每周平均体育运动时间与性别列联表如下:
每周平均体育运动时间与性别列联表 男生 女生 总计 每周平均体育运动时间不超过4小时 45 30 75 每周平均体育运动时间超过4小时 165 60 225 总计 210 90 300
结合列联表可算得.
有的把握认为“该校学生的每周平均体育运动时间与性别有关”.
考点:1.频率分布直方图的应用;2.列联表的画法及的求解.
![](http://thumb.zyjl.cn/images/loading.gif)
为了解某班关注NBA(美国职业篮球)是否与性别有关,对某班48人进行了问卷调查得到如下的列联表:
| 关注NBA | 不关注NBA | 合计 |
男生 | | 6 | |
女生 | 10 | | |
合计 | | | 48 |
已知在全班48人中随机抽取1人,抽到关注NBA的学生的概率为
![](http://thumb.zyjl.cn/pic5/tikupic/ee/1/zhjzz1.png)
(1)请将上面的表补充完整(不用写计算过程),并判断是否有95%的把握认为关注NBA与性别有关?说明你的理由;
(2)设甲,乙是不关注NBA的6名男生中的两人,丙,丁,戊是关注NBA的10名女生中的3人,从这5人中选取2人进行调查,求:甲,乙至少有一人被选中的概率.
答题参考
P(K2≥k) | 0.10 | 0.05 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 |
![](http://thumb.zyjl.cn/pic5/tikupic/68/c/3kglm.png)
在某学校组织的一次篮球定点投篮训练中,规定每人最多投3次:在A处每投进一球得3分,在B处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投第三次。某同学在A处的命中率q1为0.25,在B处的命中率为q2,该同学选择先在A处投一球,以后都在B处投,用ξ表示该同学投篮训练结束后所得的总分,其分布列为
ξ | 0 | 2 | 3 | 4 | 5 |
P | 0.03 | P1 | P2 | P3 | P4 |
(1)求q2的值;
(2)求随机变量ξ的数学期望E(ξ);
(3)试比较该同学选择都在B处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小.
为调查某社区居民的业余生活状况,研究这一社区居民在20:00-22:00时间段的休闲方式与性别的关系,随机调查了该社区80人,得到下面的数据表:
休闲方式 性别 | 看电视 | 看书 | 合计 |
男 | 10 | 50 | 60 |
女 | 10 | 10 | 20 |
合计 | 20 | 60 | 80 |
(1)将此样本的频率估计为总体的概率,随机调查3名在该社区的男性,设调查的3人在这一时间段以看书为休闲方式的人数为随机变量X,求X的分布列和数学期望;
(2)根据以上数据,我们能否在犯错误的概率不超过0.01的前提下,认为“在20:00-22:00时间段居民的休闲方式与性别有关系”?
参考公式:K2=
![](http://thumb.zyjl.cn/pic5/tikupic/c5/0/xopqu.png)
参考数据:
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |