题目内容

某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为,中奖可以获得2分;方案乙的中奖率为,中奖可以获得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.
(1)张三选择方案甲抽奖,李四选择方案乙抽奖,记他们的累计得分为X,若X≤3的概率为,求
(2)若张三、李四两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?

(1);(2)详见解析.

解析试题分析:(1)记“这2人的累计得分X≤3”的事件为A,依题意,两人累计得分的可能值为,故事件“”的对立事件为“”,所以所求事件的概率;(2)因为每次抽奖中奖与否互不影响,且对方案甲或方案乙而言,中奖的概率不变,故对于张三、李四两人抽奖可看成两次独立重复试验,其中奖次数服从二项分布,设张三、李四都选择方案甲抽奖中奖次数为X1,都选择方案乙抽奖中奖次数为X2,则X1,X2~B,则累计得分的期望为E(2X1),E(3X2),从而比较大小即可.
(1)由已知得,张三中奖的概率为,李四中奖的概率为,且两人中奖与否互不影响.
记“这2人的累计得分X≤3”的事件为A,则事件A的对立事件为“X=5”,
因为×,所以=1-×=,所以 .  6分
(2)设张三、李四都选择方案甲抽奖中奖次数为X1,都选择方案乙抽奖中奖次数为X2
则这两人选择方案甲抽奖累计得分的数学期望为E(2X1),
选择方案乙抽奖累计得分的数学期望为E(3X2).
由已知可得,X1,X2~B
所以E(X1)=2×,E(X2)=2×
从而E(2X1)=2E(X1)=,E(3X2)=3E(X2)=6.
,即,所以
,即,所以
,即,所以
综上所述:当时,他们都选择方案甲进行抽奖时,累计得分的数学期望较大;当时,他们都选择方案乙进行抽奖时,累计得分的数学期望较大;当时,他们都选择方案甲或乙进行抽奖时,累计得分的数学期望相等.  12分
考点:1、对立事件;2、二项分布的期望.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网