题目内容
为了解某班关注NBA(美国职业篮球)是否与性别有关,对某班48人进行了问卷调查得到如下的列联表:
| 关注NBA | 不关注NBA | 合计 |
男生 | | 6 | |
女生 | 10 | | |
合计 | | | 48 |
已知在全班48人中随机抽取1人,抽到关注NBA的学生的概率为.
(1)请将上面的表补充完整(不用写计算过程),并判断是否有95%的把握认为关注NBA与性别有关?说明你的理由;
(2)设甲,乙是不关注NBA的6名男生中的两人,丙,丁,戊是关注NBA的10名女生中的3人,从这5人中选取2人进行调查,求:甲,乙至少有一人被选中的概率.
答题参考
P(K2≥k) | 0.10 | 0.05 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 |
(1) 关注NBA 不关注NBA 合计 男生 22 6 28 女生 10 10 20 合计 32 16 48
有95%把握认为关注NBA与性别有关;
(2).
解析试题分析:(1)根据在全部48人中随机抽取1人抽到关注NBA的学生的概率为,可得关注NBA的学生的人数,即可得到列联表;利用公式求得K2,与临界值比较,即可得到结论.
(2)计算从5人中选2人 一切可能的结果组成的基本事件个数,再根据甲、乙至少有一人被选中,计算满足条件事件数,求出概率.
(1)列联表补充如下:
(2分) 关注NBA 不关注NBA 合计 男生 22 6 28 女生 10 10 20 合计 32 16 48
由公式 (4分)
因为4.286>3.841.故有95%把握认为关注NBA与性别有关. (5分)
(2)从5人中选2人的基本事件有:,共10种,其中甲、乙至少有一人被选中有:共7种, 故所求的概率为 (10分)
考点:独立性检验的应用;独立性检验的基本思想;计算基本事件数及事件发生的概率.
某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.
一次 购物量 | 1至 4件 | 5至 8件 | 9至 12件 | 13至 16件 | 17件及 以上 |
顾客数(人) | x | 30 | 25 | y | 10 |
结算时间 (分钟/人) | 1 | 1.5 | 2 | 2.5 | 3 |
已知这100位顾客中一次购物量超过8件的顾客占55%.
(1)确定x,y的值,并估计顾客一次购物的结算时间的平均值;
(2)求一位顾客一次购物的结算时间不超过2分钟的概率.(将频率视为概率)
某高校共有15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时)
(1)应收集多少位女生样本数据?
(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据分组区间为:.估计该校学生每周平均体育运动时间超过4个小时的概率.
(3)在样本数据中,有60位女生的每周平均体育运动时间超过4个小时.请完成每周平均体育运动时间与性别的列联表,并判断是否有的把握认为“该校学生的每周平均体育运动时间与性别有关”.
附:
0.10 | 0.05 | 0.010 | 0.005 | |
2.706 | 3.841 | 6.635 | 7.879 |
某中学将100名高一新生分成水平相同的甲、乙两个“平行班”,每班50人.陈老师采用A、B两种不同的教学方式分别在甲、乙两个班级进行教改实验.为了了解教学效果,期末考试后,陈老师分别从两个班级中各随机抽取20名学生的成绩进行统计,作出茎叶图如下.记成绩不低于90分者为“成绩优秀”.
甲 | | 乙 |
6 | 9 | 3 6 7 9 9 |
9 5 1 0 | 8 | 0 1 5 6 |
9 9 4 4 2 | 7 | 3 4 5 8 8 8 |
8 8 5 1 1 0 | 6 | 0 7 7 |
4 3 3 2 | 5 | 2 5 |
(1)在乙班样本中的20个个体中,从不低于86分的成绩中随机抽取2个,求抽出的两个均“成绩优秀”的概率;
(2)由以上统计数据填写下面列联表,并判断是否有90%的把握认为:“成绩优秀”与教学方式有关.
| 甲班(A方式) | 乙班(B方式) | 总计 |
成绩优秀 | | | |
成绩不优秀 | | | |
总计 | | | |
附:,其中n=a+b+c+d.)
P(K2≥k) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 | 0.001 |
k | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |