题目内容
(本小题12分)某产品原来的成本为1000元/件,售价为1200元/件,年销售量为1万件。由于市场饱和顾客要求提高,公司计划投入资金进行产品升级。据市场调查,若投入万元,每件产品的成本将降低元,在售价不变的情况下,年销售量将减少万件,按上述方式进行产品升级和销售,扣除产品升级资金后的纯利润记为(单位:万元).(纯利润=每件的利润×年销售量-投入的成本)
(Ⅰ)求的函数解析式;
(Ⅱ)求的最大值,以及取得最大值时的值.
(1)(2)的最大值为万元,万元
解析试题分析:⑴依题意,产品升级后,每件的成本为元,利润为元
年销售量为万件 ……3分,
纯利润为 ……5分,
……7分
⑵ ……9分,
……10分,
等号当且仅当 ……11分,
即(万元) ……12分
考点:本小题主要考查以基本不等式为工具求函数的最值.
点评:求解这种实际问题时,首先要耐心读懂题目,根据题目写出函数解析式,并且注意实际问题的定义域;利用基本不等式求最值时,要注意基本不等式成立的条件:一正二定三相等.
(本小题满分14分)某公司生产的新产品的成本是2元/件,售价是3元/件,
年销售量为10万件,为了获得更好的效益,公司准备拿出一定的资金做广告,根据经验,每年投入的广告费是(万元)时,产品的销售量将是原销售量的倍,且是的二次函数,它们的关系如下表:
··· | 1 | 2 | ··· | 5 | ··· | |
··· | 1.5 | 1.8 | ··· | 1.5 | ··· |
(2)求与的函数关系式;
(3)如果利润=销售总额成本费广告费,试写出年利润S(万元)与广告费(万元)的函数关系式;并求出当广告费为多少万元时,年利润S最大.